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1. Introduction. We will be concerned with finite difference techniques for the 
solution of eigenvalue and eigenvector problems for ordinary differential equations. 
There are various methods by which the continuous eigenvalue problem may be 
transformed into a discrete problem. We will be concerned with methods which re- 
duce to a matrix eigenvalue problem I A + XB I = 0. This paper may be divided 
into two parts. The first deals with numerical methods for the solution of the matrix 
eigenvalue problem. The second deals with the convergence of the solution of the 
discrete problem. 

The eigenvalues of the matrix are found by a "rootfinder" technique. The 
determinant I A + XB I is computed for a given X, usually by Gaussian elimination 
using interchanges. This is coupled with a rootfinder such as Muller's or Newton's 
which locates the zeros of the determinant [5, 61. This method is usually rather slow 
in comparison with other methods for computing eigenvalues such as the Q-R 
algorithm. However, the matrices arising from differential equations are frequently 
banded (aij = b = 0 for I i - j I > t), with the "bandwidth" t small in comparison 
with the order of the matrices. In some cases, only a single eigenvalue of the matrix 
is required and a good approximation for this eigenvalue may be available for use by 
the rootfinder. This is the case in hydrodynamic stability problems where the "least 
stable mode" is computed as a function of a parameter such as the Reynolds number. 
A good approximation for the eigenvalue at a new value of the parameter can be 
obtained by extrapolation from values previously computed. For these problems, 
the use of Gaussian elimination with a rootfinder may be competitive with the Q-R 
algorithm. 

In Section 2, a convergent difference scheme for a simple eigenvalue problem is 
described. This is to be compared with the non-convergent difference scheme for the 
same problem described in Section 5. In Section 3 a comparison of the Laguerre [4] 
and Muller [5] rootfinders is made on the basis of efficiency and accuracy. Since the 
rootfinder is the most critical element in this computational scheme, it is important 
to choose the best one. 

A "block" Hyman's method may be used to compute the determinant in place 
of Gaussian elimination. This method was suggested by B. Parlett. It can be most 
efficiently applied to a "block" Hessenberg matrix of the form 

E1 F1 0 
I E2 F2 
0 

0 I EN-, FN-1 
0 I EN 
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The matrices Ei and Fi are matrices of low order, typically two-to-six. This type of 
matrix sometimes arises in eigenvalue problems. The "block" Hyman's method is 
described in Section 4. 

The last three sections deal with the question of convergence. In Section 5 we 
give an example of a "natural" difference scheme for a simple eigenvalue problem 
which fails to converge. This scheme has truncation error of second order. A differ- 
ence scheme for an initial-value problem must be stable as well as consistent in order 
to insure convergence. This example demonstrates that some sort of "stability" 
criterion is needed for difference schemes applied to boundary-value problems. 

In Section 6 we note that a simple finite difference scheme, applied to a certain 
singular eigenvalue problem (that is, one with a continuous spectrum), converges. 
This simple example is included because finite difference methods are frequently 
applied to the singular equations which are generated by problems in inviscid hydro- 
dynamic stability. It may be possible to prove some general results concerning con- 
vergence for singular equations. 

In the last section we provide a convergence proof for a certain difference scheme 
for a self adjoint eigenvalue problem of arbitrary order. The fact that both the differ- 
ence scheme and the differential equation allow a variational formulation is essential 
to the proof. 

2. The Finite Difference Method. We wish to obtain the eigenvalues and eigen- 
vectors of an ordinary differential equation or system of equations. The differential 
equation is replaced by a homogeneous system of difference equations [10]. The 
zeros of the determinant of this system, that is, the eigenvalues, are then found by 
using a rootfinder. We used a rootfinder due to Laguerre [4] and also one due to 
Muller [5]. 

For example, suppose we wish to solve the following eigenvalue problem, 

u - v= 0, 

v' + X =-, u(O) = u(r) = O. 

whose solution is X = n2, u = sin (mx), v - m cos (mx). The finite difference 
equations are 

Ui+i-Ui-hVi = 0, where Uj = u(ih), 0 < i < Ml h = 7r/M, 

lj+1j- + hXUi+l = 0 V = v(ih + h/2), 0 < i < ?M-1. 

Note that the values of U and V are staggered. These equations can be written in 
the form of a matrix equation A (X) W = (B + XC) W = 0, where W is the vector 
W = (U0, VOX ...* VM_1, UM). This is a generalized eigenvalue problem. The 
exact solution is easily seen to be X 4(sinnmh/2)2/h2, Ui-sin rnih, Vi = 

>/X cos m(ih + h/2) for m = 1, * *, M- 1. This is a good approximation, for 
small mh, to the solution of (2.1). 

The numerical method consists in the use of Gaussian elimination to compute the 
determinant A(X) = B + XC. The zeros of the determinantal equation A(X) = 0 
are then found by using a rootfinder. In the above problem we gain a slight ad- 
vantage in roundoff error by using a first-order system rather than a second-order 
equation. The termed 2 + Xh2 appears in the difference equations for the second-order 
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equation. If our machine carries eight digits and h = 0.001, then we cannot expect to 
obtain much more than two digit accuracy for the root X = 1. By using the first- 
order system we avoid this difficulty. 

The eigen vectors are found as follows. Assume that Xo is a good approximation 
to an eigenvalue, that is, A(X0) is nearly zero. To avoid working with a singular 
matrix, form B - A (Xo) + eJ (we might have e = 0.01, for example). Now use the 
inverse power method to find the eigenvector of B corresponding to the smallest 
eigenvalue of B [11]. If e is small enough this should be the eigenvector of A cor- 
responding to the eigenvalue Xo . 

The finite difference matrix associated with a differential equation will be 
banded, that is, the elements aij of the matrix satisfy the condition Cj = 0 if 

i - j I > s, where s is the "bandwidth." Of course, the subroutines used to evalu- 
ate the determinant and the eigenvector take advantage of this fact. 

3. Rootfinders. We will discuss two rootfinders, that of Laguerre [4] and that 
of Muller [5]. We assume that we wish to locate the roots of a polynomial Pn(z) of 
degree n. The algorithm we use for the Laguerre rootfinder is that given by Parlett, 
although Parlett was not forced to use a finite difference representation for Pn'(z) 
and Pn," (z) [4]. If we have already located the roots z1 , * -, Za , and if z'k) is an 
approximation to z?+s , then a new approximation z?+') is computed by 

(k-Il) z(k) -tt n s (3.1) Z S+ i2vt((t - 1)[tS2 - ni-s 

where 

Pn W ( z) 8 ) 
S1=pn(Z(k)) E(Z(k) _Z2i 

(Pn')2 
_ Pn Pn S 

S2 5 pn2 
Z=i (z(k) -Z.)2 

The sign in the denominator of equation (3.1) is chosen to minimize z(kl) - Z(k)I. 
Derivatives are represented by finite differences, thus, 

P '(z(k)) = [P (z(k) + 6) - Pn(z(k) - 6)1/26 

and 

Pn ( = [Pn(z) + 6) - 2Pn(z(k)) + pn(Z(k) - 5)]/52 

The parameter 6 was usually taken to be 6 = 0.01 for the problems described here. 
The selection of 6 causes some difficulty. If two roots are separated by a distance 
less than 6 they are not likely to be located accurately. If 6 is too small, roundoff 
error can cause trouble. The algorithm used for MAuller's method is that given by 
Frank [6]. That is, 

Z(k+3) = Z(k+2) + (Z(k+2) - Z(k?l) ) dk+3 

where 

-2FE+2(1 + dk+2) 
=t bki? [b'+2 - 4Fk+2 d + 2(1 + dka2)[Fk dk+2 - Fk+?(1 + dk-2) + Fk+211)12' 
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bk+2 = Fkd r2- Fk+1(1 + dk+2) + Fk+2(1 + 2dk+2), 

Fk P Pn(zk))1/ T (Z(k) _ Zi). 

For both methods the test for convergence is 

Z - z|(k) < 61(j Z(k+l)| + e2). 

We wish to apply these finite difference methods to problems of hydrodynamic 
instability. In these problems it is necessary to locate that root with the largest 
imaginary part. Usually it is necessary to find only this one root. Therefore, a de- 
sirable rootfinder would find that root zi closest to the initial guess z(o). Then, if the 
initial guess is reasonably close, the rootfinder should converge to the desired root. 
Since we wish to tabulate this root as a function of a parameter, a reasonable initial 
guess can usually be obtained by extrapolation from values already known. 

In order to test these two rootfinders we used the following polynomial: P%(z) 
= (z - 1.3')D28(Z). Here, D28(z) is the determinant of the system of equations 
(5.1) (see Section 5) with M = 24. We know that 11 roots of D28(z) = 0 aregiven 
by (sin (mh) )2/h2 for m = 1, * , 11. There is also one root at the origin and, of 
course, six roots on the circle of radius 1.3. We are interested in the order in which the 
roots are located, their accuracy, and the average number of functional evaluations 
required to find a root. 

A program was written to compute the roots of P%(z) using the two root- 
finders. Figure 3.1 shows the order in which the first ten roots were found. Roots 
corresponding to missing numbers are outside the range of the graph. For each of 
the ten roots the initial approximation z(01 had the same value. The different figures 
show the effect of changing z(?) for each of the two rootfinders. 

In the bottom four figures we used the polynomial 

P27(z) = (z - 1 - .5i)(z - 2 - i)(z - 3 - 1.5i)(z - 4 - 1.5i)D28(Z). 

Clearly, neither rootfinder would consistently locate that root closest to the initial 
approximation. However, Laguerre's method is somewhat superior to Muller's 
method in this respect. When z = 1, neither rootfinder located the closest root 
(z =-1.3) first. This fact makes it difficult to track roots as a function of a param- 
eter. 

The behavior of a rootfinder doubtless depends on the relative location of the 
roots. Therefore, one needs to run more cases than we have to make a proper com- 
parison of the rootfinders. 

The average number of functional evaluations required to compute ten roots 
for some of the cases in Figure 3.1 are given in the table below. The parameter el used 
in the convergence test was et = 0.001. 

Functional Evaluations 

Zoo) Laguerre Muller 

lOi 24.0 30.5 
2i 19.2 13.1 

-1 16.8 10.6 
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An attempt was made to find all 29 roots using both rootfinders. The computed 
values for the last eleven roots are shown in the table below, along with the exact 
value of the root when known. The exact roots are given as real numbers, the com- 
puted roots are complex. 

Eigenvalues 

k1? Exact root Laguerre's method Muller's method 

19 30.7692 + 10-14i 14.5903 + 107i 
20 36.7330 36.7330 + 10-'1i *36.7330 + 10-4i 
21 43.7708 + 10-10i 8.54677 + 10-6i 
22 43.7708 38.3161 + 10-10i *50.7883 - 0.07i 

23 45.1335 + 10'1i *54.9607 - 0.05i 
24 49.8142 49.8142 + 10-10i *54.9607 + 0.06i 
25 50.7843 + 10-14i *57.3763 + 0.04i 
26 54.4516 54.4516 + 10-12i *45.1514 - 0.27i 

27 54.9643 + 10-0i *37.4312 + 0.lli 
28 57.3667 57.3667 + 10-10i *49.9389 - 0.14i 
29 57.5094 + 10-15i 57.5094 + 10-10i 

* In these cases, the convergence criterion (with el = 1.E-6) was not satisfied 
after 75 iterations. 

In some cases, the iterates in Muller's method failed to satisfy the convergence 
criterion. Instead, the values of z k oscillated around the real axis. 

As noted above, the values of Pt'(z) and P,,'(z) used in Laguerre's method are 
computed by finite differences using the increment 6. With 6 = 0.01 the method 
worked satisfactorily, but with 6 = 0.001 it sometimes failed to converge. This 
was apparently due to roundoff error in computing Pn"(z). With 6 = 0.01 the com- 
puted values of Pn'(z) did not change appreciably with small changes in 6; this 
was not true at 6 - 0.001. Therefore, the program should automatically vary 6 if 
convergence is not obtained. 

4. A Block Hyman's Method. In this section we will describe a second method 
for evaluating the determinant of the finite difference equations. This method was 
suggested to the author by B. Parlett. It is a modification of Hyman's method [4]. 
We will illustrate the method by applying it to the following system of differential 
equations. These equations are similar to the linearized Navier-Stokes equations 
for parallel flow. 

Du Dv 
D =-w, - - - tau) DxW Dx -iU 

DW = (f(x) - X)u + g(x)v + iaz, Dz 

D 
_- (f(x) - X)v - iaw. 

Dx 
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In the above, u, vI W, z are complex functions of the real variable x, f(x) and g(x) 
are known functions, and a is a constant. The boundary conditions are u(a) = 
v(a) = u(b) = v(b) = 0. We let h = (b - a)/M, xj = a + jh, U,- u(x;), 
Vj = v(x;), Wj - w(xj + h/2), Zi = z(xj + h/2). 

The difference equations are the following: 

U0 = V0 = M =VM =0, 

U U, - hW, = 0, 

Irj1- Vj + 2a (Uj1l + UJ) = 0, 

Wj- V-l -h (fj - X)Uj - hg, Vi - (1Z; + Zj1l) = 0, 
2 

Zj- Zj- + h(fj - X)Vj + -2h (W5 + Wi-1) 0. 

Define the vector W to be W- (UO, VO, Wo, Zo, *, U, Vm). Then the differ- 
ence equations can be written in matrix form as A W 0, where A (X) = B + XC. 
The matrices A, B, C, can be written in block tridiagonal form where the blocks are 
two-by-two matrices. That is, 

A1,2 A1,3 

A A2,1 A2,2 A2,3 

Aj1 Aj,2 

where J = 2M + 1, and similarly for B and C. For example, 

1 0 
B12 -0 1' 

-1 
Bj,l = iaxh 1f if j-2, 4, *, 2M. 

2 

For these equations, we have Aj,, -I + 0(h), j _ 2M, and Cjjl = Cj,3 0-. 
We can alter the matrix A by multiplying the jth row by -Al, and adding the last 
column to the next-to-last column to obtain a matrix A' = B' + XC', where 

A,12 A1,3 
I A22 A2,3 

I I A' A 32 A3 . 

I AJ-1,2 A'J-1,3 
I AJ,2 

Note that the zeros of A'( X)! coincide with those of A (X) 1. We will now define a 
"block Hyman's method" to compute the determinant of A'. Define the matrix X 
such that 
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....0. . .Xi A ' A;,3 0 . |I O X1 A12 A13 O .......................... Y~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~, . 0....... 
0 I 0 ......X=I A;,2 A2,3 0 

X ~~~~A'X= 

I XI- i A>-1,2 0 
xi I 0 

Thus we may take Xi to be an arbitrary non-singular two-by-two matrix, and the 
remainder of the Xj are given by the recursive formula below, 

X-1 + A>2XJ = 0, 

Xj_1 + AX,2X} + A',Xj1l = O0 

Y = A12X1 + A;,aX2 

Since det(X) = det(Xt), we have det(A') = det(Y)/det(Xj). Therefore, the 
eigenvalues are those values of X which make the determinant of Y zero. These 
values are found with a rootfinder. Of course, we must go through the transforma- 
tion from A' to Y each time the determinant is evaluated. 

An algorithm to compute the eigenvectors of A' is easily found, although we 
have no guarantee the algorithm will produce accurate results. Suppose X has been 
chosen such that det(Y) i8 nearly zero. Then we can obtain an approximate solu- 
tion for Yq = 0 by various methods. Note that the order of Y is low. Then we form 
the vector 

Xjq 0 

If Yq Othen it is easy to see from the form of the matrix A'X that A'W! = 0. 
An operational count indicates that the block Hyman's method should be slightly 

faster than Gaussian elimination when applied to matrices in the form of A'. If S 
is the order of the matrices A>,j, then the number of multiplications required to 
evaluate the determinant is approximately 2S8J for Hyman's method and 
J(6S' + S2)J for Gaussian elimination. The number of additions is approximately 
the same in each case. Of course, 3SVJ multiplications are required to put the matrix 
into the form of A', but this need be done only once, whereas the determinant must 
be evaluated many times per eigenvalue. If the matrix is in the form of A, then 
Gaussian elimination requires j(23S' - 35 - 2S)J multiplications. Hyman's 
method has the advantage of requiring slightly less storage. If the calculation of Y 
in Hyman's method causes an overflow on the machine it is only necessary to multi- 
ply the matrix XJ by a small constant to scale the computation. Thus Hyman's 
method might have some slight advantage over Gaussian elimination. However, if 
the differential equation is singular, then it is difficult to produce the identity 
matrices on the sub-diagonal of A'. In this case, Gaussian elimination is probably 
superior. 
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In order to compare the accuracy of Hyman's method with that of Gaussian 
elimination, we used the non-convergent difference scheme described in Section 5. 
Since we know some exact solutions for this problem, we can determine the error in 
the computed eigenvalues. Of course, this does not directly measure the roundoff 
error in the determinantal evaluation, but it is the eigenvalues we wish to compute. 
In both cases the Laguerre rootfinder was used. The exact solutions were computed 
double precision, the two methods used single precision on an eight digit machine 
(IBM 7090). The eigenvectors in- the case of Gaussian elimination were computed 
by the method described in Section 2. The results are given in the table below. 

For this problem there was considerable difficulty in computing the eigenvectors 
by the inverse power method. The inverse power method is defined by 
DX(k) X(k-1), where X(?) (1, 1, 1), D = A (Xo) + (I, and Xo is a computed 
eigenvalue, that is, the determinant of A (Xo) is nearly zero. The eigenvector is 
taken to be the limit of the sequence X(k). This method works well if the eigenvalues 
of D are well separated. In our case they are not well separated. With M = 24 and 

= 0.99430150, the matrix A had eigenvalues i0.OOOli. After 200 iterations with 
e = 1i0-5 the vector X(200) differed from the exact eigenvector by the error shown in 
the last column of the table below. For larger values of e the method converged too 
slowly. The fact that the method worked this well is somewhat surprising. Note that 
the roots of I A (X) I = 0 may be well separated even though the eigenvalues of D 
are not. For this problem, Hyman's method is clearly superior for the eigenvector 
calculation. 

Hyman's Method Gaussian Elimination 

h - _ _ _ _ _ _ _ _ _ 

Error in cor- Max. error in Error in Max. error in 
puted e-value e-vector computed e-value e-vector 

0.132 5. X 10-8 6.0 X 10-8 5. X 10-8 4.4 X 10-1 
0.065 5. X 10-8 7.3 X 10-8 4. X 10-8 1.7 X 10-4 

0.031 6. X 10-8 3.0 X 10-7 7. X 10-8 3.3 X 10-i 
0.016 7. X 10-8 3.0 X 10-8 4. X 10-8 5.1 X 10-4 

0.008 3 . X 10-8 1.2 X 10-6 not computed 

5. A Non-Convergent Difference Scheme. We will define a second difference 
scheme for solving the trivial eigenvalue problem given in Section 2. Instead of 
using a staggered mesh, we put both variables at the same mesh point. We assume 
the equation v' + Xu = 0 is satisfied at the boundary and use a three-point, one- 
sided difference quotient to approximate v' at the boundary. The difference equa- 
tions are 

U0 = 0, 

-3Vo + 4VI - V2 = 0, 

Ui+l Us-1 -2hVi =Of 

Vi-i Vi-, + 2hXU, = 0, 

VM-2 4VM_1 + 3VM =0 

UM = 0, 
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If the number of mesh points is odd, we can obtain a partial analytic solution 
to these equations. By combining the equations we obtain the following system for 
the variables IUo, U,2, .. , UMI: U2 - 2Uj + Ui+2 + 4h2XUi = 0, where 
i- 2, 4, ... , M 2. To obtain a non-trivial solution for the latter system, we 
must haveX = (sin (mh))2/h2, within = 12, X M/2 - 1. Remember that 
we have assumed M to be even. With a little algebra these solutions can be obtained 
explicitly. They are 

U= sin (imh), Vi = BV0m COS (inih), i = 0, 2, ... , Ml 

U -=B sin (imh), V; //Xm cOS (imh), i = 1, 3, * , M - 1, 

where 
B 4 cos (mh)/(3 + cos (2mh)), m = 1, 2, ... , M/2 -1. 

Note that B 1 + 0(h2), Am -m2 + 0(h2). Therefore, these solutions agree with 
those of the differential equation (2.1) to within 0(h2) for fixed m. 

However, we can obtain additional solutions of (4.1) by setting certain variables 
to zero, namely, 

U0 VI= U2= V*n -1= UM = O. 

Then a non-trivial solution is obtained by solving the following eigenvalue problem 
for the variables { V , Ui, U, US, VmI}: 

3TVo + V2 - 0, 

Fillj Viol + 2hXUj 01 i =1, 3, M - I1, 

Ui+,- UI1 -2hVi 0, i = 2, 4,... M-2, 

3VM + VM-2 0. 

One solution of this system is clearly X = 0, Vj - 0, Uj= constant. Of course, the 
eigenvectors are highly "discontinuous" and, therefore, not an approximation to the 
solution of the differential equation (2.1). However, the table below indicates that 
the eigenvalues, with the exception of the first, approximate those of equation (2.1) 
to within 0(h). The zero eigenvalue can be eliminated by modifying the difference 
scheme at the boundary so that the matrix is no longer reducible when X = 0. How- 
ever, the "double" eigenvalues remain. This eigenvalue problem was solved nu- 
merically by the method described in Section 4. The results are given in the table 
below (K is simply the iiumber of the eigenvalue numbered in order of magnitude). 

lEigenvalues 

K 
h_ 

1 2 3 4 5 6 7 

.12 0 .99443 1.0788 3.9115 4.242 8.557 9.273 

.06 0 .99868 1.0397 3.9789 1 4.141 8.893 9.252 

.03 0 .99967 1.(199 3.9947 4.075 8.973 9.154 

.015 0 .99992 1.0099 3.9986 ! 4.038 8.993 9.083 
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Apparently the differenctte scheme (5.1) effectively doubles the mesh spacing and 
thus introduces solutions which are poor approximations to those of the differential 
equation. In fact, the two sets of variables ( Uo, VW, * * , VM1, UM) and (Vo, U1, 

UM-l , V ) are coupled only through the two equations 

-3W0 + 4V1 - V2 0, 

V_2 - 4VM-1 + 3VM = 0. 

The system (5J1) approximates the differential equation with truncation error 
0(h2) and is, therefore, consistent. In order to insure the convergence of a difference 
scheme for an initial value problem, we must have stability as well as consistency. 
This example makes it clear that some sort of "stability" is also required for bound- 
ary value problems. It would be very worthwhile to know just how this "stability" 
should be defined. 

6. A Singular Differential Equation. We are interested in applying finite differ- 
ence techniques to problems in hydrodynamic stability. These problems are fre- 
quently singular eigenvalue problems in ordinary differential equations. Therefore, 
the following example, although quite simple, may be of some interest. 

We consider an eigenvalue problem with a continuous spectrum, namely, 
(x - X)(Y (x) - a2y(X)) = 0 Y(O) Y(1) -0. The solution is the Green's 
function 

sinh ax x < 
sinh aX 

Y(x) = 0 < X < 1. 
sinh a(x - 1) 

l.sinh a(X - 1) ' X > A\ 

The obvious finite difference scheme will produce a good approximation to this 
solution. The difference scheme is 

(xi X) (Yi+1 (2 + a 2h2) yi + YouJ) = 0 i- 1, ... X M- 1, 

YO - YM =i07 hi =, h = 1/M. 

If a non-trivial solution exists, we must have A = Xk for some k (1 < k < M - 1). 
Then we can normalize the solution by requiring that Yk = 1, in which case the 
problem reduces to two boundary value problems 

Yi+l-- (2 + a 2h2)Yi + Yi-1 0, 1 < i 1 k- 

YO= 0, Yk = 1, 

Yi+1 -(2 + a2h2)Yi + Yin =0, k + 1 i _M- 1, 

Yk , YM = 0. 

For fixed Xk = X, the solution of these difference equations will converge to a solution 
of the differential equation (assume the subdivision is such that X is always a mesh 
point) [15]. It is clear that the difference equations will yield the continuous spec- 
trum in the limit. 

It is probable that the finite difference method will also yield convergent ap- 
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proximate solutions for the more complicated equations arising in the theory of 
hydrodynamic stability. Green has applied the finite difference method to the prob- 
lem of atmospheric instability with apparent success [141. 

7. A Convergence Proof. In this section we will obtain a convergence proof for 
the difference formulation, but only for a special case. We will assume the differ- 
ential eigenvalue problem is self adjoint with special boundary conditions. We 
define our difference equations using the variational formulation of the differential 
eigenvalue problem. The proof follows the methods of Courant-Friedrichs-Levy 
[1]. Weinberger has outlined a method for obtaining lower bounds for the eigen- 
values of higher-order elliptic operators [21. His method could probably be used 
to obtain convergence in this special case, but it would probably produce a more 
complicated proof. Forsythe has obtained asymptotic error estimates for a finite 
difference scheme applied to a second-order elliptic operator, but his method is 
not obviously applicable to higher-order operators [3]. 

We let 

L(y) = ao(x) AY + ... + an(x)y = -Xy 

be an eigenvalue problem with certain homogenous boundary conditions, presently 
unspecified. We assume the eigenvalues {f k of L are real and simple ,with 
X1 < X2 < ... . We also assume the eigenfunctions IYk} of L and the coefficients 
ak(X) to be as smooth as desired. Assume that Ah is a symmetric matrix suchthat 
the system of equations Ahy = 0 is a consistent finite difference approximation for 
L(y) = 0 (here, h is the mesh spacing). That is, if y is any sufficiently smooth func- 
tion and Yhi = y(xi), then L(y) AhYh + 0(h'), where 8 > 0. In fact, we will re- 
quire that s _ 1. We let Ah(k), Uh(k) be the eigenvalues and eigenvectors of Ah (we 
assume Ah" < Ph(2) < *...* ). In essence, we are assuming that the problem is self 
adjoint and that it is difference in such a way that the symmetry is preserved. 

LEMMA 7.1. If Xp _ (P) + 0(h) for p 1, 2, ,t + 1, then| uh - XAh = 

0(hs) and 1 - Yh (t)1 0(h"). Here, YUi(t) = yej(x), where ye is the tth eigen- 
function of L and xi i8 the ith mesh point. 

Proof. The proof is by induction on t. We have Yh(e) = fq1Uh(l) + + MUh(M)), 

where Uh() are the eigenvectors of Ah normalized such that || Uh(:) || = 1. We define 
the norm by 11 U 112 = h EiM1 Uj2. Also, normalize yt such that 11 Yh(e)jj = 1. By 
assumption, L(yt) - AhYh ) = Th, where 11 Th 11 = 0(h'). Hereafter, we drop the 
subscript h. Since L(yt) = Xtye, (A X-)y(t) -r. Therefore, 

Ei( ) 
)(i) 

= -U(t 

By the induction assumption, uit ' - Xi = 0(h) for 1 < i < t - 1. Since X1 < X2 < 
< X for small enough h and 1 ?a i < t -1, we have a 5 iX - Xtei I < 

- Xt |, where a = . min{ (Xet - X-1), (X+1 - Xt))1. By the hypothesis of the 
lemma, and the fact that u~t(1) < jPt) for i > t + 1, we have a < 1 ad -Xt I if 
t < i. 

The eigenvectors U(k) are orthogonal and I IUk 1 = 1, therefore, 
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M 

(7.1) Z 12((i _ T2 

and 

E i2 < r21 11 2 = O (h28). 
iot a 

Since y(t) = 1, #t2 + Zizt /X2 = 1. Therefore, for h small, #32 > 1. From equa- 
tion (7.1), (1u) < 21' r )2 0(h2). Therefore, 0 - -O(h ). 

Next we will prove convergence for the eigenvector. We must normalize y(t) 
such that At ? 0. Since 1 -t2 O(h2), we then have 1 -t = O(h28). We have 
already proved Ei'a fi 2 _ 0(h2), therefore, 

-y(t) u_() 112 E A + ( 2 
- 1)2 = O(h28). 

Act 

The case t = 1 can be proved in the same manner. Therefore, our induction proof 
is complete. 

In order to prove the next lemma we will assume the eigenvalue problem is given 
in the following variational form [8], [9]. Let 5O(u) - f J Ek=o a8(x) [d8u/dx']2 dx 
and consider the set of functions v() (x), , v(p) (x). We assume that the boundary 
conditions are u(O) = u(1) (dku/dxk)(O) = (dku/dx=)(1) = 0. The 
admissible functions u satisfy the boundary conditions and have piecewise con- 
tinuous kth derivatives. The admissible function u which yields the maximum of 
the minimum of O(u)/II u II subject to the conditions v()- = 02 1 <i< _ p is the 
(p + 1 )st eigenfunction and the eigenvalue is this maximum. That is, 

(7.2) XM+- = ax Min m () 
v(1), -v(P) uju v(i)_0 11 U 11 

We also assume that ak(x) > e > O and as(x) ? O for s = 0, k 1. Note 
that k n/2. 

We let xi = ih, where h = 1/M is the mesh spacing. The finite difference repre- 
sentation of equation (7.2) is given by 

(p+l) Max Min D(U) 
v(1),. -,V(P) U;U. V(i)-O 11 U II 

where Dh(U) = hE&==oZ .=o a8(xi)[,A8Ui] and AU= (Ui+1 - Ui)/h. The test 
vectors U satisfy the conditions Uo = ... Uk-i = UMk+1 = UM = 0. This is a 
first-order approximation to the boundary conditions in the differential problem. 
This formulation in terms of minimizing a quadratic form is equivalent to a matrix 
eigenvalue problem. Hereafter, we will usually supress the subscript h. We will 
now prove the following lemma. 

LEMMA 7.2. If A(P) and X, are the eigenvalues of the difference and differential prob- 
lem, respectively, then Xp 9 ,u(P) + 0(h). 

Clearly, Lemma 7.1 and Lemma 7.2 together imply convergence of the difference 
scheme. In the proof of this lemma, we need only consider those h for which 

h(P) < Xp and, thus, we can assume the set {Ih(P)I is bounded. We first note the 
following inequalities which are basic in the proof. 
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1 
(AsU ? -D(U), where 0 < e _ ak(x), 

|8Ui < _ AkU | <i < MO < s< k. 

These inequalities follow easily from the fact that UO . = = Uk--=0. 
Proof. The general idea of the proof is to let v1, *. *, vp, be the first p eigenfunc- 

tions of the differential equation and define the vectors V(8) by V(s) = v,(xi). Then 
let U be the minimizing function defined by 

Min D(U) 
U;U-V(')-0158:p 11 U 11 

subject to the boundary conditions. Then D( U)/jj U 11 M5 " A('). Using U we define 
a function u(x) which is an admissible function for the differential variational 
problem (7.2) and which satisfies the conditions 

(a) fv( )udx=O O= s<p, (b) u=1, 

(7.4) d8u 
(c) 3O(u) = D(U) +O(h), (d) i=OatX = O,1 forO S s k- 1. 

This will complete the proof, since X,+1 S D(u) and 3D(u) = D(U) + 0(h) ? 
gv P+1) + 0(h). Note that X,+, is obtained by minimizing D(u)/jl u 11 subject to 

, V(8)-=. 1 < 8 ! p. 

We extend the vector U by setting UM+1 - X = UM+I = 0. Then define 

Pk(X) by iOk(x) = AkUi for xi < x S xi+,. Define u(x) by 
X 'rk-i T1 

U(X) = j 4Tk f #k(ro) dro * drk-1. 

Define ~o(x) by p(x) = x - xi, xi S x < xi+ . Thus s(x) is a "sawtooth" function. 
By first differentiating the expression for u k times, then integrating back again, 
we obtain: 

d kU 
= Yui Xi < x < x+1, 

dxk' 
dxk I= s (X),A U, Xi !5 X < Zi+l, 

(7.5) 
U(x) = Ui + |(X)i + f() o)A2Ui dro 

+ + f f .,, | (ro)A Ui dro ' drk-2. 

To verify the above equations note that 
:, ~~i-1 

f #b(X) = h , AkUj + (X X) AlkU 
i-0 

= -1 Ui + (X)AbUJ, xi 9 X < Xi+1 

To prove this lemma we need consider only those values of h such that uh(P+l) S 

X(Pl) Since D(U) :5 uh(p+1) for all h, D(U) is also bounded. Therefore, from the 
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basic inequality (7.3), we have the sum hEiZM l } A'Ui I2 bounded for 0 ? s < k. 
Consequently, hEiZ=1 j ,AUi I is also bounded independently of h. Define the func- 
tions is(x) by the equations below (see equations (7.5)). 

(7.6) d-u == AgU + hs (x) O < s < k. 

From equations (7.5), we see that 08(1) and fo i,2(x) dx are bounded independently 
of h for 0 s < k. It is obvious that 

Fd'ul2 pl 
()[1j 

M AU2 
(7.7) asx) Ld x i dx - a8(x) bP8]2 dx + O(h)== hE a8(xi)[z8UiI2 + 0(h). 

IIx1 i=1 

Therefore, O(u) = Dh( U) + 0(h). From the definition of u(x) and the fact that 
Uo = = = U_ O we have (d~u/dx/)(0) = 0 for 0 ? s < k - 1. Also, since 
i,(1) is bounded, (d'uj/dx?)(1) = 0(h). 

Define functions gj(x), O j k - 1, such that (a) gjI Ck, (b) (d8gj/dx')(O) = 0, 
s = 0, -.. , k - 1, and (c) (d&gj/dx8) ( 1 ) = &Sj , where S&j is the Kronecker delta. 
Then replace u by u - Z;2 hgjtj(l), where fj(x) is defined in equation (7.6). 
By this modification, u satisfies condition (7.4d). Equation (7.7) is still true. By the 
definition of U we have Z=1 Uivj(xi) = 0 1 < j ? p. Therefore, fSu(x)vj(x) = 

ej = 0(h). Note that u(x) = Ui + 0(h) for xi < x < x+, . We replace u(x) by 
u(x) - ZP yejvj(x). Since the functions v1(x) satisfy equation (7.4d), and since 
vjA is an orthonormal set, the new function u satisfies equations (7.4a, c, d). 

Since hZML Ui2 = 1, we can replace u(x) by u(x)0jf u2 dx and conditions (7.4) 
are all satisfied by u. 
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